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Introduction - HIPSE

HIPSE event generatorHIPSE event generator
Heavy-Ion Phase-Space Exploration
Parameterized to replicate experimental data Parameterized to replicate experimental data 
taken on the INDRA detector
Hot fragments de excited with statistical model Hot fragments de-excited with statistical model 
SIMON
Allows for correlation of impact parameter with Allows for correlation of impact parameter with 
different observables (since HIPSE provides impact 
parameter)parameter)

D. Lacroix et al., Phys. Rev. C 69, 1 (2004).



Introduction – NIMROD Filter

NIMROD filter
Filters data to approximate 
experimental data taken on 
NIMRODNIMROD

For example, angular 
resolution becomes 
discrete, some particles don’t 
have enough energy to be 
detected

Because we want to use this 
method for data taken on 
NIMROD (July-August NIMROD (July August 
2008)



Introduction – NIMROD Filter

Distribution of events sorted by impact parameter with Distribution of events sorted by impact parameter with 
(left) and without (right) NIMROD filter 

(fm) (fm)



Introduction – Neural Network

Neural Network allows Neural Network allows 
for multiple correlations 
to be considered for 
estimating the output 
for a given set of inputs
Trained using simulated 
data
Can then applied to 
experimental data

Image courtesy of Wikipedia:
http://en.wikipedia.org/wiki/Image:Neural_network_example.png



Bin Mapping Approach – Methodpp g pp
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Bin Mapping Approach – Methodpp g pp

Three approaches:pp
Impact parameter distribution is separated into four or 
five evenly spaced portions to which observable 
di t ib ti   ddistributions are mapped.
Observable distribution is separated into four or five 
evenly spaced portions to which impact parameter y p p p p
distribution is mapped.
Observable distribution is binned by hand to avoid 
di ti iti  I t t  di t ib ti  i  th  discontinuities. Impact parameter distribution is then 
mapped to these bins.

Estimates compared with HIPSE valuess a es co pa ed w  S  va ues



Bin Mapping Approach – Methodpp g pp

SystemsSystems
70Zn on 70Zn at 35MeV/u
64Zn on 64Zn at 35MeV/uZn on Zn at 35MeV/u
64Ni on 64Ni at 35MeV/u
64Zn on 64Ni at 35MeV/u/



Bin Mapping Approach – Methodpp g pp

Quantities examined
All quantities examined with Z-V cut: ΣZfragxV||frag>½ZprojxVproj 

Event transverse momentum* and velocity (avg. and total)

Event parallel momentum and velocity (avg. and total)

Transverse energy

Average detector angle (theta)

Neutron multiplicity*

Charged particle multiplicity*

Total particle multiplicity

Mid-rapidity charge (amount of charge per event with -Vproj < Vparticle < Vproj in center of 
mass frame)mass frame)

Forward charge (theta < 35°)

Backward charge (theta > 70°)*

Heavy (Z > 2) / light (Z ≤ 2) fragment ratioHeavy (Z > 2) / light (Z ≤ 2) fragment ratio

Intermediate (6 > Z > 2) / light (Z ≤ 2) fragment ratio
*marked quantities also examined without the cut



Bin Mapping Approach – Resultspp g pp

Examples of poor separation:Examples of poor separation:
Mid-rapidity charge
Total parallel momentumTotal parallel momentum

Examples of good separation:
Total particle multiplicityTotal particle multiplicity
Neutron multiplicity
Charged particle multiplicityC a ged pa c e u p c y
Event total transverse momentum



Bin Mapping Approach – Resultspp g pp
Example - Separation of impact parameter by total transverse momentum without Z-V cut



Bin Mapping Approach – Resultspp g pp

Separation of impact parameter by mid-rapidity charge 
(left) and total parallel momentum (right)



Bin Mapping Approach – Resultspp g pp

Separation of impact parameter by total particle 
multiplicity (left) and neutron multiplicity (right)



Bin Mapping Approach – Resultspp g pp

Separation of impact parameter by charged particle 
multiplicity using four bins (left) and five bins (right)



Bin Mapping Approach – Resultspp g pp
Separation of impact parameter by total transverse momentum without Z-V 

cut 70Zn on 70Zn (top left), 64Zn on 64Zn (top right), 64Ni on 64Ni (bottom 
left), 64Zn on 64Ni (bottom right), all at 35MeV/u



Neural Net Approach – Methodpp

Trained with:Trained with:
Charged particle multiplicity
Neutron multiplicityNeutron multiplicity
Event total transverse momentum
Intermediate / light fragment ratio/ g g

Set up to yields most probable bin number to be 
compared to binned HIPSE valuesp

http://cern.root.ch , Class: TMultiLayerPerceptron

https://twiki.cern.ch/twiki/bin/view/Atlas/PhysicsAnalysisWorkBookNeuralNetwork



Neural Net Approach – Resultspp

Neural NetNeural Net
Separation proved better than previous method
Still some overlap at low impact parameter Still some overlap at low impact parameter 
(understandable)
Values placed in one of five equally spaced bins (due 
to the nature of this net) and compared with similarly 
binned HIPSE values



Neural Net Approach – Resultspp

Separation of impact parameter using the Neural Net(left) and distribution of p p p g ( )
Neural Net generated impact parameters versus HIPSE generated impact 

parameters (both divided into five equally spaced bins (right)



Conclusions

Total transverse momentum and charged Total transverse momentum and charged 
particle, neutron, and total particle multiplicities 
suitable for impact parameter determination via p p
binning method
Neural Net useful tool to better impact parameter p p
determination
Continuing research would allow for additional 
quantities to be examined, and for promising 
quantities to be integrated into the training of the 
neural net
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